Carteolol Hydrochloride Suppresses the Generation of Reactive Oxygen Species and Rescues Cell Death After Ultraviolet Irradiation of Cultured Lens Epithelial Cells

نویسندگان

  • Yuichi Kaji
  • Takahiro Kiuchi
  • Tetsuro Oshika
چکیده

INTRODUCTION Anti-oxidant activities of adrenergic β-blockers are proposed in various organs. The aim of the present study was to investigate the effect of carteolol hydrochloride, an adrenergic β-blocker, on the production of reactive oxygen species (ROS) and the viable cell number after ultraviolet irradiation of cultured lens epithelial cells (LECs). MATERIALS AND METHODOLOGY Cultured LECs were exposed to 0, 10(-5), 10(-4), and 10(-3) M carteolol hydrochloride for 30 min followed by ultraviolet B (UVB) irradiation at intensity of 100, 200, or 400 mJ/cm(2). The amount of ROS in the LECs was measured using dichlorodihydrofluorescein at 30 min after exposure to UVB. In addition, the number of living LECs was counted at 15 h after exposure to UVB. RESULTS Exposure to 10(-3) M carteolol hydrochloride significantly decreased the amount of ROS after exposure to UVB at intensities of 100, 200, and 400 mJ/cm(2). In addition, 10(-3) M carteolol hydrochloride significantly increased the viable cell number after exposure to UVB at 400 mJ/cm(2). However, 10(-4) and 10(-5)M carteolol hydrochloride had no significant effect on ROS or the viable cell number in LECs. DISCUSSIONS Carteolol hydrochloride protects LECs against UVB irradiation by inhibiting the intracellular production of ROS.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Iron Overload Induced Apoptotic Cell Death in Isolated Rat Hepatocytes Mediated by Reactive Oxygen Species

Isolated rat hepatocytes in culture were incubated with different concentrations of iron-sorbitol (50, 100, 150, and 200 µM) to assess the changes in reactive oxygen species (ROS) and lipid peroxidation leading to apoptotic hepatocyte cell death. The viability of hepatocytes was declined depending on the iron concentration. One hour incubation of the cells with 100 µM iron resulted in decreased...

متن کامل

Iron Overload Induced Apoptotic Cell Death in Isolated Rat Hepatocytes Mediated by Reactive Oxygen Species

Isolated rat hepatocytes in culture were incubated with different concentrations of iron-sorbitol (50, 100, 150, and 200 µM) to assess the changes in reactive oxygen species (ROS) and lipid peroxidation leading to apoptotic hepatocyte cell death. The viability of hepatocytes was declined depending on the iron concentration. One hour incubation of the cells with 100 µM iron resulted in decreased...

متن کامل

Role of Caspases and Reactive Oxygen Species in Rose Bengal-Induced Toxicity in Melanoma Cells

Objective We have previously shown that Rose Bengal (RB) alone, not as a photosensitiser, could induce apoptotic- and non-apoptotic cell death in different melanoma cell lines. To clarify RB-induced toxicity mechanisms, role of caspases and reactive oxygen specious (ROS) were studied in melanoma cells. Material and Methods Human melanoma cell lines, Me 4405 and Sk-Mel-28 were cultured in DM...

متن کامل

The flavonoid, fisetin, inhibits UV radiation-induced oxidative stress and the activation of NF-кB and MAPK signaling in human lens epithelial cells

PURPOSE Ultraviolet (UV) radiation-induced oxidative stress plays a significant role in the progression of cataracts. This study investigated the photoprotective effect of fisetin on UV radiation-induced oxidative stress in human lens epithelial cells and the possible molecular mechanism involved. METHODS SRA01/04 cells exposed to different doses of ultraviolet B (UVB) were cultured with vari...

متن کامل

CuO nanoparticles induce cytotoxicity and apoptosis in human K562 cancer cell line via mitochondrial pathway, through reactive oxygen species and P53

Objective(s): This study focused on determining cytotoxic effects of copper oxide nanoparticles (CuO NPs) on chronic myeloid leukemia (CML) K562 cell line in a cell-specific manner and its possible mechanism of cell death. We investigated the cytotoxicity of CuO NPs against K562 cell line (cancerous cell) and peripheral blood mononuclear cell (normal cell). Materials and Methods: The toxicity w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2010